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We investigate the dynamics of a thin liquid film on an inclined planar substrate in the presence of an
insoluble surfactant on its free surface. We consider both the linear and nonlinear regimes. The linear regime
is examined through the Orr-Sommerfeld eigenvalue problem of the full Navier-Stokes and concentration
equations and wall and free-surface boundary conditions. The nonlinear regime is investigated through two
different models. The first one is obtained from the classical long-wave expansion and the second one through
an integral-boundary-layer approximation combined with a simple Galerkin projection. Although accurate
close to the instability threshold, the first model fails to describe the dynamics of the system far from criticality.
On the other hand, the second model not only captures accurately the behavior close to the instability threshold,
but is also valid far from criticality. Analytical and numerical results on the role of the surfactant on the
free-surface dynamics are presented. In the linear regime, the Marangoni stresses induced by the surfactant
reduce the domain of instability for the base flow. In the nonlinear regime, the system evolves into solitary
pulses for both the free surface and surfactant concentration. The amplitude and velocity of these pulses

decrease as the Marangoni effect becomes stronger.
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I. INTRODUCTION

The dynamics of a thin film falling down an inclined pla-
nar substrate has been the subject of numerous studies since
the pioneering works by Kapitza [ 1] and Kapitza and Kapitza
[2]. A falling film is a convectively unstable open-flow hy-
drodynamic system with a sequence of wave instabilities and
transitions which are generic to a large class of hydrody-
namic and other nonlinear systems: amplification of small-
amplitude white noise, filtering mechanism of linear instabil-
ity, secondary modulation instability that converts the
primary wave field into a train of solitary pulses, and inelas-
tic pulse-pulse interaction. Extensive reviews of the rich dy-
namics of this system are given in [3,4].

The dynamics of a falling film can be influenced by sur-
face tension gradients due to spatially inhomogeneous tem-
perature fields (thermal Marangoni effect) or due to the pres-
ence of surface active agents—i.e., surfactants (solutal
Marangoni effect). Both effects alter the fluid flow through
interfacial stresses induced by changes of the surface tension
of the fluid. The coupling of a falling film with the thermal
Marangoni effect has been investigated in different settings.
Goussis and Kelly [5] scrutinized the onset of the instability
for a film falling down a uniformly heated wall, while Joo et
al. [6], Kalliadasis er al. [7], Trevelyan and Kalliadasis [8],
Ruyer-Quil er al. [9], and Scheid er al. [10] focused on the
nonlinear wave regime for the same problem. Scheid er al.
[11] investigated the nonlinear evolution of a falling film
heated nonuniformly from below, while Demekhin er al. [12]
examined the linear stability of a falling film heated by a
downstream linearly increasing temperature distribution. On
the other hand, Trevelyan et al. [13] and Trevelyan and Kal-
liadasis [14,15] studied the dynamics of a falling film in the
presence of internal heat generation due to exothermic
chemical reactions.

The associated problem of the coupling of a falling film
with the solutal Marangoni effect has also been investigated
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in different settings. The influence of soluble surfactants on
the linear instability of a falling film was examined by Ji and
Setterwall [16] and Shkadov et al. [17]. On the other hand,
the influence of insoluble surfactants on the linear instability
of a falling film was examined by Blyth and Pozrikidis [18]
while the coupling of a film falling down a corrugated wall
with insoluble surfactants was examined by Pozrikidis [19]
and Luo and Pozrikidis [20] in the limit of vanishing Rey-
nolds number and by Luo and Pozrikidis [21] for finite Rey-
nolds number.

In the present study we consider the problem of a film
falling down a planar vertical wall in the presence of in-
soluble surfactants and in the region of small to moderate
Reynolds numbers. We examine in detail the linear stability
properties of the system by performing a systematic analysis
of the Orr-Sommerfeld eigenvalue problem of the full
Navier-Stokes and concentration equations. The same prob-
lem was also considered by Blyth and Pozrikidis [18] who
identified all modes of the Orr-Sommerfeld problem: the
usual interfacial mode for a free-falling film, a concentration
mode, and the shear modes associated with the Nusselt semi-
parabolic velocity profile. They performed a small-wave-
number expansion for the interfacial mode that also yields
the critical Reynolds number for the instability onset, and
they showed that the Marangoni effect can suppress the in-
terfacial mode. They presented numerical results for the in-
terfacial and concentration modes for small Reynolds num-
bers and for the leading shear mode at large Reynolds
numbers. Here we give small-wave-number expansions for
all modes, we present numerically all modes for both small
and large Reynolds numbers, and we study the effect of the
Marangoni number on all modes. We provide physical in-
sight into the concentration mode and show that it is simply
a “diffusional” mode appropriately modified by advection
and is associated with the specific structure of the surface
transport equation: this mode exists even in the absence of
the Marangoni effect—i.e., for any species on the free sur-
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face and not necessarily a surfactant or even if concentration
is replaced with temperature.

We subsequently focus on the nonlinear dynamics follow-
ing the destabilization of the base flow and clarify how it can
be affected by the Marangoni stresses: the nonlinear regime
has not been investigated before, and thus we provide a more
integrated picture of the dynamics of a film with insoluble
surfactant. Our starting point of the analysis of this regime is
the “boundary-layer equations” in the presence of surfactant.
These equations are derived with the “boundary-layer ap-
proximation” in which the pressure is eliminated by integrat-
ing across the film the cross-stream component of the mo-
mentum equation where the inertia effects are neglected. We
then use the boundary-layer equations as a basis for the deri-
vation of two reduced models: the first one is based on the
classical long-wave expansion and the second one on a
simple weighted residuals approach.

We first examine the linear stability characteristics of the
two models. Both predict accurately the critical Reynolds
number for the instability onset, and their neutral stability
curves are found to be in good agreement with those ob-
tained from the Orr-Sommerfeld problem (with the curves of
the second model performing better than those of the first
one). Subsequently we focus on single-hump stationary soli-
tary waves. We demonstrate that for the first model the soli-
tary wave solution branches for the speed of the waves as a
function of Reynolds number are unrealistic with turning
points and branch multiplicity at certain values of the Rey-
nolds number above which solitary waves do not exist. This
leads to a catastrophic blowup behavior for the first model
when it is integrated in regions of the parameter space where
solitary waves do not exist. In contrast, the solitary wave
solution branches of the second prototype predict the con-
tinuing existence of solitary pulses for all Reynolds numbers.
Moreover, the second prototype is found quite robust in
time-dependent computations without any singularity forma-
tion. These computations also reveal that the large-time be-
havior of the system is characterized by trains of solitary-
wave-like coherent structures which strongly resemble the
infinite-domain stationary solitary waves.

Further, we scrutinize the role of the Marangoni stresses
in the nonlinear regime. Their main effect is to dampen the
free-surface solitary pulses. On the other hand, at sufficiently
large Reynolds numbers the flow tends to accumulate the
surfactant at the front stagnation point of a recirculation zone
forming beneath the primary solitary hump, leading to large
values of the surfactant concentration there. This can be al-
leviated or even suppressed all together by increasing the
Marangoni number. Hence the Marangoni effect induced by
the surfactant has a dramatic effect both on the linear and
nonlinear regimes of the system.

The paper is organized as follows. In Sec. I we formulate
the problem, and in Sec. III we give the nondimensionaliza-
tion and governing dimensionless groups and their param-
etrization. The Orr-Sommerfeld eigenvalue problem for the
linear stability of the base flow is examined in Sec. IV. In
Sec. V we develop the boundary-layer equations in the pres-
ence of surfactant as a basis for the derivation of the two
prototypes of reduced dimensionality discussed earlier. Nu-
merical results for infinite-domain stationary solitary pulses
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FIG. 1. Sketch of a film falling down a planar inclined substrate.
The film thickness is (x,7) with respect to a Cartesian coordinate
system (x,y) with origin on the substrate. The surface of the film is
covered with an insoluble surfactant with concentration I'(x,1).

are presented in Sec. VI, and time-dependent computations
are discussed in Sec. VIIL.

II. PROBLEM DEFINITION AND GOVERNING
EQUATIONS

Figure 1 shows the problem definition. We consider a
two-dimensional thin liquid film falling down a planar in-
clined wall forming an angle 6 with the horizontal direction.
The surface of the film is covered by insoluble surfactants
which alter the surface tension, which in turn generates an
interfacial shear stress that affects the evolution of the film.

A Cartesian coordinate system (x,y) is chosen so that x is
in the direction parallel to the substrate and y is the outward-
pointing coordinate normal to the substrate. The fluid has
viscosity u, density p, and surface tension ¢. The governing
equations are the continuity and Navier-Stokes equations

V-u=0, (1a)

14
p<5+u-V)u=—Vp+V-7+pg, (Ib)

where V=(d/dx,d/dy) is the gradient operator on the
(x,y) plane, u=(u,v) is the fluid velocity vector,
g=g(sin #,—cos ) with g is the gravitational acceleration, p
is the fluid pressure, and 7= u[(Vu)+(Vu)] is the deviatoric
stress tensor.

These equations are subject to the following boundary
conditions. On the substrate we have the usual no-slip and
no-penetration conditions

u=0 on y=0. (2)

On the free surface y=h(x,7) we have the kinematic bound-
ary condition along with the normal and tangential stress
balances
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hi+uh,=v, po—p+(7-n)-n=20K(h),

(7-m)-t=V,o-t, (3)

where p, is the pressure of the surrounding gas phase and n
and t are unit vectors, normal (outward pointing) and tangen-
tial to the interface, respectively, defined from
n=n"'(-h,,1) and t=n"'(1,h,), where n=(1+h*"2
K(h)=—(1/2)V,-n is the mean curvature of the interface,
and V,=(I-nn)-V is the surface gradient operator with I the
2 X2 unitary matrix and nn the dyadic product of the unit
vector n with itself. Hence the tangential stress balance in-
cludes the Marangoni effect in its right-hand side through the
gradient of the surface tension along the interface.

So far, we have not specified the nature of the Marangoni
effect and indeed Egs. (1)—(3) apply to both thermal and
solutal Marangoni effects. For the second case considered
here the interfacial concentration I' of the surfactant obeys
the following transport equation at y=h(x,) [22,23]:

I,+ul +TV, -u=DVT, (4)

where D; is the surface diffusivity. The first two terms in this
equation correspond to the material derivative of I" as it is
advected by the flow, the third term accounts for the concen-
tration change due to the stretching of the surface, and the
last term describes the surface diffusion of the surfactant,
which is assumed to be given by Fick’s law. The surfactant
transport equation given in Ref. [24] can be rewritten as Eq.
(4) in this paper provided that the partial time derivative in
this reference is not interpreted as the usual partial time
derivative—i.e., the derivative obtained by differentiating
with respect to time for a fixed point in space—but as a
partial time derivative that follows the interface in a direction
normal to the interface (the “normal time derivative follow-
ing the interface” according to the terminology by Cermelli
et al. [25]). This issue is discussed in detail in Ref. [23].

The system is closed with a constitutive relation for the
dependence of the surface tension on surfactant concentra-
tion, which then allows the evaluation of the right-hand side
of the tangential stress balance in (3). Here we assume that
for the region of concentrations of interest o is a linear func-
tion of I',

o=09-UI'-Ty), (5)

where I'j) is a uniform reference value corresponding to the
Nusselt flat-film solution (given in Sec. III), oy=0(I"y), and
v>0 (for typical liquids). Equation (5) depends only on y
and I'y and is a simple generic prototype equation of state
that has been used frequently in thin-film studies to model
the solutal Marangoni effect (see, e.g., the reviews in
[26,27]). Indeed on several occasions the variation of surface
tension with concentration found experimentally can be ap-
proximated by a linear function for a wide range of concen-
trations [28].

At the same time, various more involved models based on
physicochemical and thermodynamic considerations have
been suggested [29]. A widely used one is a nonlinear con-
stitutive equation, the von Szyszkowski equation (e.g.,
[30-34]), which predicts a decrease of surface tension with
surfactant concentration and reads
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r
o=0,+RTT,, ln(l—r—>, (6)

o0

where o, is the surface tension of the pure liquid, R is the
ideal gas constant, T is the absolute temperature, and I'., is
the limiting surface concentration for the surfactant corre-
sponding to a close-packed monolayer of molecules (satura-
tion concentration). We now show that under certain condi-
tions, Eq. (5) can be obtained from Eq. (6). We first note that
Eq. (6) is not valid for large values of I', especially as I’
approaches I',, where o develops a logarithmic singularity.
Indeed, large values of I' will induce strong changes of the
mechanical properties of the interface and interfacial quanti-
ties such as surface viscosity must be taken into account. I is
then assumed to be small to moderate, formally expressed as
I'<TI',, (a small value of I' can still yield an appreciable
Marangoni effect, but a very small value does not, and the
situation would be equivalent to that of a free-falling film).
Moreover, in order to simplify the constitutive model, I" is
assumed to be sufficiently close to the uniform reference
value T’y corresponding to the Nusselt flat-film solution
(given in Sec. III). Hence I is at most moderate as well. Let
us then rewrite Eq. (6) as

r, r-r
0=ap+RTlen<1——0— °>
r. L.

Iy r-r,
=0, +RTT,|In| 1 = — | +In| 1 - ,
| IS I'.-T,

which when expanded for I'-I'y<I",,—T"; (which with I'; at
most moderate is equivalent to I'-I"y<T",; i.e., the expan-
sion takes place around I'y), yields the linear form in (5)
where

r
0y = 0+ RIT, 1n(1 - F—°> =ofy)  (Ta)
and
RTT .,
= , 7b
ko . (7b)

thus allowing a connection with physical experiments. Note
that -y depends on concentration through the ratio I'y/ I, with
the value RT/[1-(I'y/T",)], while for very small I'; com-
pared to I, vy has the value RT for all surfactants.

Falling film experiments typically involve a thin film of
water at room temperature (25 °C) [35]. This was the case,
for example, in the experimental studies by the Kapitzas on
the dynamics of the free surface of the film [2]. Typical val-
ues of the various physical parameters for water are given in
Table I. Various surfactants can then be used to examine the
solutal Marangoni effect on the falling film, including
soluble ones, provided that the time scale of desorption is
small compared to the typical time scale of the dynamics
considered here. This is, e.g., the case with sodium dodecyl
sulfate on water, which is practically an insoluble surfactant
[31,36]. Typical values of the various dimensional param-
eters for the surfactant are also given in Table I. The value
for I, is a basic reference value corresponding to a typical

036312-3



ANTONIO PEREIRA AND SERAFIM KALLIADASIS

PHYSICAL REVIEW E 78, 036312 (2008)

TABLE 1. Typical values of the various dimensional quantities. The working liquid is water at 25 °C, and
the plane is vertical. For a fixed surfactant then the only free parameter is the Nusselt flat-film thickness,
which can be modified via the flow rate go=g sin 0h8/(3 v) (see discussion in Sec. III). Here it is assumed to
be in the range ~0.1—1 mm, which is typical of free-falling film experiments [35].

Parameter Symbol Typical value
Nusselt flat-film thickness I 0.1-1 mm
Nusselt flat-film interfacial velocity 1 0.05-5 ms™!
Inclination angle 90°
Liquid density [37] p ~10° kgm™
Liquid viscosity [37] o ~1073 Pas
Liquid surface tension [37] 0y 70-74 mN m™!
Surfactant concentration Iy 0-2%10"7 mol m™2
Surfactant maximum concentration [29,38] I, 2% 107 mol m~2
Surface tension coefficient y 2400-2800 N m mol ™!
Surfactant surface diffusion coefficient [28] D, 10710-1078 m? 5!

order of magnitude; e.g., values I',,=6 X 107° mol m~2 and
8 X 107% mol m~2 have also been reported [29] so that ',
=0(10"° mol m~2) (equivalently the value in Table I is a
lower bound on I',)). The range of values for I'; is obtained
by assuming Iy to be a fraction of I',,, I'y=0-0.1T",,, with
0y~ 2800 N m mol~! for I'y=0.1T".,. The fraction 0.1 of T,,
corresponds to a small value of I'y which as pointed out
earlier can still yield an appreciable Marangoni effect. Fi-
nally, the surface tension coefficient y in Table I is obtained
from Eq. (7b).

II1I. NONDIMENSIONALIZATION

The system (1)—(4) has a trivial solution corresponding to
the plane-parallel base state, the Nusselt flat film with a
semiparabolic velocity profile, a linear decreasing pressure
distribution from the wall to the free surface, and a uniform
surfactant concentration,

sin 6
h=hy u=5""2(2hgy—y?), v=0,
2v
p=po+pgcos Bhy—y), I'=I, (8)

with Iy corresponding to the uniform surface tension oy in
Eq. (5). The volumetric flow rate (per unit width in the trans-
verse  direction) is  obtained  from  go=/Ru dy
=g sin 0h8/ (3v). We now utilize the trivial solution to intro-
duce the nondimensionalization,

(X,y) - hO(-x’y)’ h - hOh’ (M,U) - MO(M’U)9 t— M_Ot’
0
(9a)
P — Po+pghysin bp, T — T\l (9b)

where u,=gh{ sin 0/(2v) is the Nusselt flat-film interfacial
velocity.

In terms of these nondimensional variables Egs. (1) be-
come

(10a)

Re(u, + uu,+vu,) ==2p, +u, +u, +2,  (10b)

Re(v, + uv, +vv,) == 2p, +v,, +v,, -2 cotan 6.
(10¢)
These equations are subject to the wall boundary conditions
u=v=0 on y=0 (11)

and the dimensionless versions of the interfacial boundary
conditions on y=h(x,?) in (3):

v=h,+uh,, (12a)
1 x
1 2
p+ 1+ 1’12[(1 _hx)ux+hx(uy+vx)]
F hxx
=—[We —Ma( —1)]m, (12b)

—dha,+ (1= ) (uy+v,)=-2MaVl + ;L. (12¢)

On the interface we also have the dimensionless version of
the surface transport equation (4):

I
I+ul, + m[(ux +ho,) + h(u,+ho,)]
+h ’

1 1 T
Pe V1 +n\N1+h )/,

The basic equations for the analysis to follow are
(10)—(13). This system is governed by 6 and four dimension-
less groups, the Reynolds, surface Péclet, Weber, and Ma-
rangoni numbers, respectively,
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TABLE II. Typical ranges for the dimensionless groups corre-
sponding to the parameter values given in Table 1.

Dimensionless group Symbol  Typical value
Modified Reynolds number X 10-10000
Kapitza number Ka 3400
Schmidt number Sc 100-10000
Modified Marangoni number M 0-30
Reynolds number Re 5-5000
Weber number We 10-1000
Surface Péclet number Pe, 500—5 % 107
Marangoni number Ma 0-6
Re= X sin 6, Pe = )—(Sc sin 6,
2 2
W Ka M (14a)
€=z, a=—r ", a
X sin 6 X7 sin 6
where
gho v 7 Mo
X="2 Sc= ES’ Ka= pg 3 M= PN
(14b)

correspond to a modified Reynolds number, Schmidt num-
ber, Kapitza number, and modified Marangoni number, re-
spectively. With the exception of y, all other parameters in
Eq. (14b) are independent of h,, which is a flow control
parameter, and depend on the physical properties of the
liquid-surfactant system (in experiments the film thickness
can easily be modified via the flow rate g, and hence it is
useful to have only one parameter that depends on the Nus-
selt flat-film thickness). Hence the above parametrization
distinguishes clearly between the flow and the physical prop-
erties of the liquid and surfactant such that for a given liquid
and surfactant the only free parameters are y or kg, and 6,
while the vertical falling film-problem is a one-parameter
system only.

Typical ranges of the dimensionless groups for the values
of the dimensional parameters in Table I are given in Table
II. Recall from Sec. II that a small ratio I'y/I",, can still cause
a significant Marangoni effect. Indeed, from Table II the
modified Marangoni number M can be as large as ~30 cor-
responding to y~2800 N m mol~! and I'y/T".,~0.1. Further,
from the definitions of M and 7,

RT I,
= pg”4v4/3 & 1 ’
Iy

so that for the fixed value of I',, in Table I, M varies only as
a function of the ratio I'y/I",, and for a fixed value of this
ratio it does not depend on the surfactant, like y (assuming
the von Szyszkowski model is valid).
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IV. LINEAR STABILITY OF THE NUSSELT FLAT FILM
SOLUTION

A. Orr-Sommerfeld eigenvalue problem

We now examine the linear stability of the Nusselt flat-
film solution in (8) whose dimensionless form is

r=1,
(15)

u=2y-y>, v=0, p=(l—-y)cotan6, h=1I,

corresponding to the steady state of the system in (10)—(13).
By substituting

u=2y-y*+it, v=0, p=(1-y)cotan §+p,

h=1+h, T'=1+T (16)

1
l

into (10)—(13) and linearizing for h,i,0,p,['<<1 yields the
disturbance equations

i, +0,=0, (17a)
Re[ﬁt + (2)/ - yz)ﬁx + 2(1 —)’)17] == zﬁx + ﬁxx + ﬁyy»
(17b)
Re[D,+ (2y = y*) 0,1 == 25, + Uy, + Dy, (17¢)
subject to the wall boundary conditions
u=0=0 on y=0 (18)

and the interfacial conditions along with the linearized con-
centration equation at y=1:

G=h+h,, (19a)

P +ii,=— Weh,, + h cotan 6, (19b)
— 2N+ i, + 0, = - 2Mal ,, (19¢)
Pe ([, +T, +i,)=T,,. (19d)

The disturbances are sought in the form of normal modes

[i,0.p.h,T'1=[UG),V(y),P(y),H,Glexp(\t + ikx),
(20)

which introduce the functions U(y), V(y), and P(y) and the
constants H and G. k is the wave number, and the complex
frequency iA=i\g—A\; contains the growth rate Ay and the
complex wave velocity c=iN/k, with cg=—N\;/k the phase
velocity. The disturbance equations are simplified by intro-
ducing the stream function W=idy)exp(Ar+ikx), with
=V, or U=, and ==V, or V=—iki. Equations (17)—(19)
are then converted into the Orr-Sommerfeld (OS) eigenvalue
problem of the linearized Navier-Stokes and concentration
equations

(D? = I*)*p=Re{[\ + ik(2y — y*)|(D* - k) + 2ik}4p,
(21a)

subject to the boundary conditions at y=0,
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(21b)

¥=0, Dy=0,

and at y=1,

M
(N +ik)(D? + k)i = = 2ikip— 26*MaD i+ 2iP—ak3G,

S

(21c¢)
(D* - 3k)Di= (\ + ik)Re Diy + ik(cotan 6
+ k°We)[(D? + k) i+ 2ikMaG],
(21d)
k2
()\+ik+ P—)G=—ikD¢p, (21e)

where D=d/dy. Hence the OS eigenvalue problem contains
two unknowns: (y), which satisfies the fourth-order differ-
ential equation (21a), and G, and is subject to five boundary
conditions in Egs. (21b)—(21e). The original variables P and
H in Eq. (20) are obtained from

(D*-I)Dy Re[\ +ik(2y — y») Dy
2ik 2ik

P= +Re(l -y)y,

(22a)

1
H= E(D2 + k%) (1) + ikMaG. (22b)

B. Small-wave-number expansion and critical condition

Although a full solution of (21) can only be obtained nu-
merically, an analytical solution is possible in the limit k
—0. As in (21) only odd powers have an imaginary coeffi-
cient, it is appropriate to seek a solution in the form

[WGJ\] = [lr//OsGO’)\O] + ik[lpl’Gl»)\l] + kz[‘/’Z’GZ’)\Z]
+[O(K),0(),0()],

where even terms in this expansion are real and odd purely
imaginary. Substituting it into Eq. (21) and expanding in
powers of k gives a sequential solution of the eigenvalue
problem. The eigenvalue A is obtained from the tangential
stress balance, Eq. (21c), where the Marangoni effect is pre-
dominant. Note that the linearity and homogeneity of Eq.
(21) leads to an infinite number of solutions; however, by
appropriately normalizing ¢, and removing replicated solu-
tions of ¢, that occur at each of the higher orders, we can
obtain a unique solution. The result for \ is

8 2
N(k) == 2ik + (E Re — 3 cotan 60— 2Ma>k2+ O,

(23a)

1
N2 (k) = — ik — P—k2 + 0, (23b)
c

S
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N(k) = - T2 4 O0), 1 odd, (23¢)

4 Re

i.e., a countable infinite family of eigenvalues and where the
superscripts 1, 2, and 3 are used to denote the three distinct
types of modes. Note that the higher-order terms of O(k?),
O(k?), and O(k) in (23a)—(23c), respectively, are not given
here as the solution of the OS problem at the corresponding
orders is rather cumbersome and lengthy [the equations do
suggest though that Ma appears in O(k?) in (23b) and O(k?)
in (23¢)].

The second mode originates from the surface transport
equation and was first obtained numerically by Blyth and
Pozrikidis [18] in their study of the OS problem. They re-
ferred to it as the “Marangoni mode.” Here we prefer the
term “concentration mode” as the mode exists even for Ma
=0—i.e., for any species on the free surface and not neces-
sarily a surfactant. In other words, this mode is not a feature
of the coupling between the film flow and the surfactant. It is
simply a “diffusional mode” appropriately modified by ad-
vection and is associated with the particular structure of the
surface transport equation, which is just the Laplacian of T’
together with the convective terms and a term due to the
stretching of the interface. This mode would be present in-
dependently of the particular situation being examined—e.g.,
for an horizontal film or even in the absence of a film—in
which case the stretching term would disappear as there is no
interface; of course, I' would represent a different physical
entity in each case.

Hence for the surfactant problem considered here the con-
centration mode is associated with the diffusion of the spe-
cies and its advection by the flow as also indicated by the
presence of Pe,. The phase velocity for this mode is cg=
~\/k=1+0(k%); i.e., to leading order in it is the same with
the free-surface velocity of the Nusselt flat film (recall from
Sec. III that velocities scale with the Nusselt flat-film inter-
facial velocity) so that the species is simply transported by
the flow. This mode is strictly stable as long as the surfactant
is able to diffuse; i.e., Pe, is finite, but it becomes neutrally
stable when Pe,— 0, in which case convection is much
faster than diffusion and any perturbation in surfactant con-
centration does not decay, but is advected by the flow with-
out any change.

The modes in (23c) are due to the hydrodynamics for
Ma=0. In this limit, these modes are the so-called “shear
modes” associated with the semiparabolic Nusselt velocity
profile [3,39] and we shall also refer to them as “shear
modes” in the presence of the Marangoni effect. In the ab-
sence of the Marangoni effect these modes are stable in the
limit k— 0, but the least stable shear mode can be destabi-
lized at some finite k. We shall demonstrate later on that the
same is true in the presence of the Marangoni effect in agree-
ment with the prediction by Blyth and Pozrikidis [18].

The first mode is also due to the hydrodynamics when
Ma=0. It is the classical long-wave interfacial instability
mode first observed in the experiments by Kapitza and
Kapitza [2] appropriately modified by the Marangoni effect
and subsequently we shall refer to it as the “Kapitza mode.”
The threshold of this mode and its linear stability properties
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were scrutinized by Benjamin [40] and Yih [41] in the ab-
sence of the Marangoni effect, by Benjamin [42], Whitaker
[43], and Blyth and Pozrikidis [18] in the presence of the
solutal Marangoni effect associated with insoluble surfac-
tants, and by Goussis and Kelly [5], Kalliadasis et al. [7],
Trevelyan and Kalliadasis [8], and Scheid ef al. [10] in the
presence of the thermocapillary Marangoni effect induced by
heating the film uniformly from below. The real part of \'
indicates that the onset of instability occurs when the coeffi-
cient of O(k?) vanishes, which gives the critical Reynolds
number above which the flow loses stability,

5 15
Re,. = 1 cotan 6+ ZMa, (24)

while the maximum growing linear mode at criticality has a
wave number that is exactly zero. Equation (24) coincides
with the analytical prediction by Blyth and Pozrikidis [18]
(following an appropriate transformation associated with the
scalings adopted by these authors) and for Ma=0 reduces to
the well-known critical condition for a free falling film,
Re.=(5/4)cotan 0 [40,41]. The phase velocity of this mode
is cg=2+0O(k?); i.e., to leading order in k infinitesimal inter-
facial disturbances travel with a velocity twice that of the flat
film interfacial velocity (again, recall from Sec. III that ve-
locities scale with the Nusselt flat-film interfacial velocity).

The critical condition in (24) indicates that increasing Ma
decreases Re, and hence the Marangoni effect is stabilizing.
The opposite would be true for Ma<0—i.e., y<0. Indeed,
although typically surface tension decreases when concentra-
tion increases, there are some systems known to display the
opposite behavior [31]. For simplicity we shall focus here on
the usual case y>0.

Finally, for the associated problem of thermocapillary
Marangoni effect (with y>0) on a falling film due to heating
uniformly the film from below, the influence of the Ma-
rangoni effect is opposite to that in the present problem: it
reduces the critical Reynolds number (by an amount propor-
tional to both the thermocapillary Marangoni number and the
Biot number that expresses the rate of heat transport at the
liquid-gas interface) and hence it has a destabilizing influ-
ence on the film [5,7,8,10].

C. Numerical solution

The OS eigenvalue problem in (21) can be solved numeri-
cally by a variety of methods such as shooting, finite-
differences, or spectral methods [18]. Here we utilize the
continuation software AUTO97 by Doedel er al. [44] and
based on Keller’s pseudoarclength continuation method [45].
It is a powerful, fast, and efficient numerical software for
solving equations whose solutions are subject to a set of
constraints, and we have successfully implemented it before
in the numerical solution of boundary value problems such
as the OS problem that governs the linear stability of a fall-
ing film heated uniformly from below [10].

The numerical methodology of AUT097 consists of con-
structing successive solutions of the equations by following
continuously a branch in the parameter space. A set of con-
straints (including the boundary conditions) and the free pa-
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FIG. 2. Numerical solution of the Orr-Sommerfeld eigenvalue
problem (21): dispersion curves Ag(k) of the three least stable
modes as k— 0 and two different values of the modified Marangoni
number: M=0 (solid line) and M=9 (dashed line). The values of
the remaining parameters are =10, Ka=3000, Sc=100, and 6
=m/2. The curves marked with 1, 2, and 3 correspond to the
Kapitza, concentration, and shear modes in (23). The inset is a
blowup of the behavior as k— 0. Note that the solid curve 2 for
M =0 moves very slowly downwards as k increases, while curve 3
starts from —72/(4 Re) at k=0 [see (23¢)].

rameters to vary have to be specified (the exact number de-
pends on the dimensionality of the branch to be followed). A
starting point for the continuation procedure is typically a
trivial solution for the chosen values of the free parameters
and which also satisfies all constraints.

As the system in (21) is linear, the amplitude of its solu-
tion is undetermined and so a constraint and normalization
condition on the amplitude must be added. Here we choose
the integral constraint

I !
f ($+G)dy5f Ypdy+G=1, (25)
0 0

as G is only defined on the interface and does not depend on
y. The OS eigenvalue problem is then recast into a dynami-
cal system of dimension 11: four complex ordinary differen-
tial equations or equivalently eight real ones for ¢ plus Dy
=1 to convert the nonautonomous dynamical system to an
autonomous one plus two from DG =0 (recall that G is only
defined on the interface and so its not influenced by y—we
need to incorporate G in the dynamical system). This 11th-
order dynamical system is subject to the integral constraint in
(25). For a specific mode and set of parameter values, we use
as a starting solution the one derived analytically in the limit
k—0 as detailed earlier and k is chosen as the continuation
parameter. The complex constraint in (25), equivalent to two
real constraints, implies that two parameters are allowed to
vary along the branches of solutions. These are chosen as the
speed ¢ and modified Reynolds number Y, and since k is the
continuation parameter, the result of the computation is cg(k)
and y(k).

Figure 2 depicts the dispersion curves \g(k) for the three
least stable modes as k— 0 (modes with largest Ay in this
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FIG. 3. Numerical solution of the Orr-Sommerfeld eigenvalue
problem (21) for y=1.5x 10* dispersion curves Ag(k) of the four
least stable modes as k— 0 and two different values of the modified
Marangoni number: M=0 (solid line) and M=9 (dashed line). The
values of the remaining parameters are the same with those in Fig.
2. The curves marked with 1, 2, and 3 correspond to the Kapitza,
concentration, and shear modes for n=1,3 in (23). The inset is a
blowup of the behavior as k—0. In this region the M=0 and M
=9 curves are graphically indistinguishable from each other. The
shear modes for n=1,3 start from —72/(4Re) and 9772/ (4Re) at
k=0, respectively. These two modes cross over first at k=0.01 and
later on at k=0.6. Note that for the n=1 shear mode the M =0 and
M =9 curves are graphically indistinguishable from each other over
the entire range of wave numbers. Note also that solid curve 2 for
M =0 moves very slowly downwards as k increases.

region), x=10, and two values of the modified Marangoni
number, M=0 and M=9. The values of the remaining pa-
rameters are Ka=3000 (water at 25°), Sc=100, and 0=m/2
(these parameter values are fixed for the remaining of our
study). The figure indicates that for M=9 the Marangoni
effect makes the growth rate of the Kapitza mode negative
for all k and hence it completely stabilizes this mode consis-
tent with (23a); note, however, that in the region k=0.5, the
Marangoni effect amplifies the Kapitza mode and this is fol-
lowed by a slow dampening at k=0.8. Regarding the con-
centration mode, the Marangoni effect dampens it for all k.
On the other hand, the shear modes in the presence of the
Marangoni effect seem to be less stable up to k=0.8 and are
slowly dampened for larger k.

Figure 3 depicts the dispersion curves \g(k) for the four
least stable modes as k— 0, Kapitza mode, and concentration
mode and the first two shear modes for n=1 and n=3, for the
large value y=1.5X 10* and two values of the modified Ma-
rangoni number, M =0 and M=9. The first shear mode for
n=1 dominates over the second one for n=3 as k— 0 and up
to k=0.01, but the second one dominates over the first one
from k=0.01 up to k=0.6. The first shear mode then takes
over the second one and is eventually destabilized at k=1.
This mode remains practically unaltered when M changes
from O to 9. The growth rate of the Kapitza mode is the one
that still dominates the instability. Equation (23c) shows that
in the region of k— 0 and as Re tends to infinity, there will
be an infinite number of shear modes clustered at the origin
with vanishing growth rates there and potentially more shear
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modes might be destabilized as Re increases to values be-
yond that in Fig. 3. Finally we note that for the large value of
x in the figure, )\}Q~Rek2 and one has to go to a really small
k for the quadratic behavior of the Kapitza mode with respect
to k to be visible.

V. MODEL EQUATIONS IN THE PRESENCE OF
SURFACTANT

A. Boundary-layer equations

For a free-falling film the linear instability due to the
Kapitza interfacial mode eventually leads, through a se-
quence of wave transitions, to a nonlinear regime which is
typically characterized by trains of solitary pulses which
continuously interact with each other. We shall demonstrate
that the same is true for a falling film in the presence of
surfactant.

The starting point of our analysis of the nonlinear wave
regime is the “boundary-layer equations” in the presence of
surfactant. The boundary-layer equations for a free-falling
film are typically derived by assuming strong surface tension
effects and without strict orders of magnitude assignments
for the different dimensionless groups (see, e.g., [4,46]).
These equations are obtained with the so-called “boundary-
layer approximation”: the pressure is typically eliminated, as
in Prandtl’s boundary-layer theory [47], by integrating the y
component of the momentum equation in which the inertial
effects are neglected across the film. The resulting pressure
distribution is then substituted into the x component of the
momentum equation.

The boundary-layer approximation is performed by as-
suming that the strong surface tension effects induce large
wavelengths (in comparison with the Nusselt flat-film thick-
ness hy) and consequently a scale separation between x and
y. Formally, we define a small parameter e~ d/dx,d/ dt, the
“long-wave” or “film parameter,” which allows us to inves-
tigate slow time and space modulations of the Nusselt flat-
film solution. We then introduce the transformation

X 1
X—=, t—~—, U—ev, (26)
€

s

which converts Egs. (10) to
(27a)
eRe(u, +uu,+vu,) =-2ep, + Eu, + Uy, +2, (27b)
€ Re(v, + uv, +vv,) = - 2p, + €v,, + €v,, — 2cotanb,
(27¢)
subject to the wall boundary conditions
u=v=0 on y=0 (28)

and the rescaled versions of the interfacial boundary condi-
tions (12):

v="h,+uh,, (29a)
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€
p+ Telhz[(l - ezhi)ux+ hx(uy+ elvx)]

Ehy, (29b)

=—[We-Ma(I - 1)]m’

—4€hu,+(1 - Ezhi)(uy +€v,) =—2eMayl + E€RT,.
(29¢)
On the interface we also have the rescaled version of the
surface transport equation (13):

T, +ul, + [u,+ €nw, + h(u, + €Rp,)]

_r
1+ En?

LI ( L ) (30)
Pes\/1+ezhi V/l+ezhf x.

With e2Re<1, the y component of the momentum equa-
tion (27c) is p,=—cotan 6+ (e, €Re). Also, with Ma< We,
€We at most of O(1) and €We> ¢, the normal stress bal-
ance in (29b) gives p=—e*Weh,,+O(€,eMa) on y=h(x,1).
With Re<We the pressure is then given by p=cotan 6(h
-y)—€€Weh, + (€, €Re, €Ma), which is then substituted
into the x component of the momentum equation (27b) and
we neglect terms of O(€?, €Re, €Ma), but we keep the in-
ertia terms which are of O(eRe). Hence, €Re is at most of
O(1) and eRe>{€, eMa}, while €Re<1 is automatically
ensured by eRe at most of O(1). Further, in the tangential
stress balance equation (29¢) we assume eMa at most of
O(1), eMa>é&* and we neglect terms of (e, €eMa)
=0(€) since €Ma is at most of O(e?). At the same time
since €Re is at most of O(1), the neglected terms in (27b) are
of O(é, eRe, €Ma)=0(€?). Note that with eRe at most of
O(1), eMa at most of O(1), and eWe> 1, the conditions
Re<We and Ma<<We are automatically satisfied.

In the concentration equation (30) we assume €/Pe > €,
€/Pe, at most of O(1) or equivalently Pe, < €', Pe, at least
of O(e), and we neglect terms of O(€?). We note that for
small Pe,, the surfactant will have a uniform concentration:
its motion is dominated by diffusion which is so fast com-
pared to convection so that any peaks in surfactant concen-
tration will be instantly homogenized [indeed in this limit
and after neglecting terms of O(€?), I',,=0 with solution I’
=const=1 as I" has to be finite as x— *o0]. On the other
hand, for large Pe, the motion of the surfactant is dominated
by convection as pointed out in Sec. IV B. The extent to
which the surfactant affects the flow now through the Ma-
rangoni effect depends on the size of Mal’,.

These assumptions then lead to the bulk equations

u+v,=0, (31a)

€ Re(u, + uu, +vu,) = - 2eh,cotanf+ 2€ Weh,, + u,, +2,
(31b)
subject to the wall boundary conditions
u=v=0 on y=0 (32)

and interfacial boundary conditions
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h;+uh,—v=0, (33a)
u,=—2eMal’,, (33b)

while the concentration equation is simplified to
Pe((I;+ ul’y + Tu, + Thou,) = el (34)

Note that Egs. (33a) and (34) can be written in conservative
form as h+q,=0 and T',+[ul,.,I'=€l’,/Pe],=0, respec-
tively, where g=/ gu dy is the flow rate in the streamwise
direction.

Equations (31)—(34) are the first-order boundary-layer
equations in the presence of surfactant [as terms of O(€?)
and higher have been neglected] and, much like the
boundary-layer equations for a free-falling film, they are also
derived with only the long-wave assumption and without
precise and overly restrictive stipulations on the order of
magnitude of the different dimensionless groups. They are
the basis for the derivation of two simpler sets of equations
in the following two subsections: namely, the equation ob-
tained from the long-wave expansion and the integral-
boundary-layer approximation.

B. Long-wave expansion

The free-boundary problem in (31)—(34) can be substan-
tially simplified with a “long-wave” expansion (LWE)—i.e.,
a perturbation expansion in €. For the free-falling film LWE
leads to a single equation of the evolution type for the free
surface (see, e.g., [3,4]). A detailed comprehensive review of
LWE in different thin-film flow settings is given in [26],
while applications of LWE on wetting-dewetting problems
and isothermal and heated falling films specifically are given
in [27].

We begin by assigning the following relative orders be-
tween the different dimensionless parameters and e Re
=0(1), We=0(e?), and Ma=0(1), consistent with the or-
ders of magnitude assignments in Sec. V A. For Pe; we re-
tain the order of magnitude assignment in Sec. V A, i.e.,
€/Pe;> € and €/Pe, at most of O(1). We then expand u and
v up to O(e), {u,v}~{uy,vo}+€fu;,v,} [after all, in our
boundary-layer equations we have neglected terms of O(€?)
and higher] and we substitute these expansions into (31),
(32), and (33b) (note that I" is not expanded with respect to €
and hence a precise order of magnitude for Peg is not re-
quired). The resulting set of equations is solved for u, u;, v
and v, (the velocity and y dependence are thus eliminated
from the boundary-layer equations) and by substituting the
expansions for # and v into the kinematic boundary condi-
tion (33a) and the expansion for u into the concentration
equation (34), we obtain a set of two, first-order in the long-
wave parameter €, coupled nonlinear partial differential
equations for the evolution in time and space of 4 and I'. The
parameter € can be scaled away from these equations by
reverting to the original time and space variables—i.e., x
— ex and t— er—which yields the final LWE model equa-
tions
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2., 2 5 2 3
h,+\ -h” — —cotan6h’h,+ -Weh’h,,,
3 3 3

8

+— Re hh, — Math‘x) =0, (35a)
15 N

2 2 2 5 5

I+ || h°—cotanbh“h, + Weh“h,,, + P Re i’h,
I,
—2Mahl' T - —=| =0. (35b)
S 1y

A linear stability analysis of the steady state [h,I"]
=[1,1] with perturbations of the form exp(\z+ikx) yields
two roots for N\, which when expanded for small k become

1 . 8 2 2
N (k) =-2ik+ ERe—gcotan0—2Ma k

7 1 2\
+ | — Re — —cotan@ + — |Maik’ + O(k*),
30 3 Pe,

(36a)

, o1, (7 1 2\
N (k) =—ik— —k" - | — Re — —cotan0+ — |Maik-
Pe, 30 3 Pe;

+O>kY. (36b)

By neglecting terms of O(k%) and higher, these modes are
identical to the Kapitza and concentration modes in (23a)
and (23b) obtained from the OS eigenvalue problem [by ne-
glecting terms of O(k®) and higher]. As a consequence, LWE
gives exactly the same critical condition with (24) obtained
from the OS analysis. However, LWE fails to predict the
shear modes in (23c): it is the y dependence in the OS eigen-
value problem that is responsible for the infinite number of
modes. LWE eliminates this dependence by slaving all vari-
ables, except I', to h, yielding finally two evolution equations
for h and I' and hence only two linear modes.

C. Weighted-integral-boundary-layer approximation

Another way of eliminating the y dependence of the prob-
lem is via the “integral-boundary-layer” (IBL) approxima-
tion. For the free-falling film IBL was introduced by Shka-
dov [48] (Demekhin and Shkadov extended it to three
dimensions [46], but here we are concerned with two-
dimensional flows). It combines the first-order boundary-
layer approximation with the assumption of a self-similar
semiparabolic profile and the Karman-Pohlhausen averaging
method in boundary-layer theory in aerodynamics [47]. The
first-order IBL approximation leads to a system of two
coupled nonlinear partial differential equations for the film
thickness and flow rate in the streamwise direction. This
model has been successful in describing solitary waves in the
region of moderate Reynolds numbers (e.g., [4]), but its pre-
diction of the critical Reynolds number for the instability
onset and of the neutral stability curve close to criticality
have a 20% error compared to those obtained from OS.

In contrast, the LWE neutral curve agrees with the OS one
for Re close to Re,, but deviates from the OS one as Re
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increases. By including higher-order terms in LWE, this de-
viation is progressively delayed to higher Re. As LWE is a
regular perturbation expansion of the full Navier-Stokes and
other equations such as energy equation in the case of heated
films, it also predicts accurately interfacial quantities such as
interfacial temperature (LWE reduces all dependent variables
to interfacial ones) close to criticality. Hence, LWE fully
resolves the behavior close to the instability threshold. How-
ever, unlike the LWE neutral curve which can be improved
for large Re by taking higher-order terms in the expansion,
the same is not true for interfacial quantities. Indeed, it is
now well established that LWE breaks down at an O(1)
value of the Reynolds number, leading to unacceptable
finite-time blowup behavior (e.g., [49,50]).

The IBL approximation was corrected by Ruyer-Quil and
Manneville [51-53] who demonstrated that a simple Galer-
kin projection with just one test function (the self-similar
semiparabolic profile assumed by Shkadov) and a weight
function the test function itself (the Karman-Pohlhausen av-
eraging method employed by Shkadov can be viewed as a
special weighted residuals technique with a weight function
equal to unity), fully corrects the critical Reynolds number
and the neutral stability curve close to criticality. Away from
criticality, a deviation between the model obtained from the
simple Galerkin projection and OS is observed. This devia-
tion is delayed to higher Reynolds numbers by taking into
account the second-order viscous diffusive effects. The asso-
ciated averaging methodology utilizes a high-order weighted
residuals approach with polynomial expansions for the ve-
locity field [51-53].

The IBL approximation for free-falling films was ex-
tended to falling films in the presence of thermocapillary
Marangoni effects induced by heating the substrate either
uniformly or nonuniformly by Kalliadasis et al. [7,54]. These
authors assumed a velocity profile that satisfies the free-
surface boundary condition due to the Marangoni effect
through a 7 method. However, the resulting model still suf-
fers from the main deficiency of IBL for the free-falling film
case: namely, a 20% error for the critical Reynolds number.
This deficiency was cured for the problem of a uniformly
heated wall by Trevelyan and Kalliadasis [8] who combined
the 7 method of Kalliadasis et al. [7,54] with the simple
Galerkin projection for the free-falling film employed by
Ruyer-Quil and Manneville (which corrects the critical Rey-
nolds number of the IBL approach), appropriately modified
for the problem of a uniformly heated wall. The more recent
studies by Ruyer-Quil et al. [9] and Scheid ef al. [10] took
into account the second-order diffusive terms of the momen-
tum and energy equations and established agreement with
OS for a large region of Reynolds numbers (up to ~100).
The procedure followed is effectively an extension of the
methodology employed by Ruyer-Quil and Manneville to
heated falling films and is based on a high-order weighted
residuals approach with polynomial expansions for both the
velocity and temperature fields.

Here we adapt the study by Trevelyan and Kalliadasis [8]
on heated films to falling films in the presence of surfactant.
Our starting point is the projection of the velocity field onto
the set of polynomial test functions,
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N

u= 2 ai(x’t) 77[’ (37)

i=1

where 7p=y/h(x,t) a similarity variable and the amplitudes a;
have to be determined. The corresponding approximation for
v is then obtained from Egs. (31a) and (32). The expansion
in (37) satisfies trivially the no-slip boundary condition in
(32). We also require that the integral of this expansion with
respect to y (or the similarity variable #) gives the flow rate
g in the streamwise direction and also satisfies the interfacial
boundary condition due to the Marangoni effect in (33).
These give

N
a; (l q a;
il e . 38
2 3 h lzzgl (38)
and
N
a)+2a,=—2eMahl’, - Y, ia;, (39)

i=3

which can be solved for a; and a,, which in turn are substi-
tuted into (37) to yield

N-1
u=u?+ eMahF)C(n —772> + 2 4 di(n),  (40a)
i=2

where

> (40b)

q qf 1 2)
=3= =3- —
Rl h(ﬂ 7
is the self-similar semiparabolic profile for the free-falling
film introduced by Shkadov [48] and, for i=2,3,4,...,N
-1,

1 3 3( 2 .
¢i(n) = (H +2>n+1<5—3(i+1))772+77+1,

(40c)

Hence, by eliminating the amplitudes a; and a, we have
introduced explicitly into the problem the streamwise flow-
rate ¢ and we have satisfied the tangential stress boundary
condition. As a consequence, we have reduced the number of
amplitudes by 1, with ¢ and qa;, i=3,4,5,...,N, the ampli-
tudes for the new set of test functions. In effect the elimina-
tion of a; and a, “homogenizes” the tangential stress bound-
ary condition and is equivalent to a tau method.
Alternatively, this approach can be viewed as a projection of
the function

%nz) (41a)

u'=u- eMahFx< n-

onto the new set of test functions ¢;(7), i=1,2,3,...,N-1,
N-1
=2 al (). (41b)

i=1

where
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ang and @) =ay,, i=23,....N-1, (41c)
so that the tangential stress boundary condition is homog-
enized.

In general, N must be sufficiently large to achieve conver-
gence; however, we shall demonstrate that, much like the
heated falling film problem considered by Trevelyan and
Kalliadasis [8], a simple Galerkin projection with just the
test function ¢, is sufficient to resolve correctly the behavior
close to criticality and describe satisfactorily the nonlinear
regime. We shall then truncate the projection in (41) after the
first term,

3
u=u"+ eMahFX< =3 772> , (42)

which is the simplest possible velocity profile that satisfies
all boundary conditions, and its integral with respect to y (or
the similarity variable ) gives the streamwise flow rate g.
We also assume that eMa<<1. Equation (42) then implies
that the velocity profile is mainly determined from the bal-
ance between the streamwise gravitational component and
viscosity and that in the presence of the Marangoni effect the
flow is still close to the Nusselt flat-film solution.

The introduction of the profile (42) into the streamwise
momentum equation (31b) yields the following residual:

R = eRe('” + u@u® + 04,0
y
+2eh,cotanf— 2€Weh,,, —u,, -2, (43)

where v©=—3u%dy’. Note that the Marangoni term in (42)
produces terms of ()(e’MaRe) in the inertia terms of the
streamwise momentum equation (31b). With eMa<1, these
terms are neglected compared to the O(eRe) terms of the
residual (43). However, the Marangoni term in (42) contrib-
utes to the viscous diffusion term u,,. In order to neglect then
the Marangoni contribution of O(e’MaRe) in the inertia
terms of (31b) compared to the Marangoni contribution of
O(eMa) in u,,, we must have eRe<1. Hence, the order of
magnitude assignments in Sec V A, eMa, eRe at most of
O(1), are now replaced by eMa, eRe <1, which shrinks the
ranges of Ma, Re (however, Ma, Re can still be large). The
remaining orders of magnitude estimates in Sec. V A remain
unaltered.

The momentum residual in (43) is then made small by
demanding it to be orthogonal to the weight function w,
which provides a constraint on ¢ and thus a closure for the
system,

<R»Wl> =O» (44)

where the inner product is defined as (f,g)=[}fg d7 for any
two functions f and g with appropriate boundary conditions.
Specifying the weight function fixes the particular weighted
residual method being used. In the case of the Galerkin
method, w| = ¢, which after integrations by parts, utilizing
the Leibnitz rule, the continuity equation (31a), the no-slip
boundary condition (32), and the kinematic boundary condi-
tion (33a) yields a nonlinear partial differential equation for
q. This equation is complemented by the kinematic boundary
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condition (33a), which by integrating the continuity equation
(31a) across the film can be written as h,+¢,=0. We also
have the concentration equation in (34) with u simply evalu-
ated from (42). As with LWE, the long-wave parameter € is
scaled away by reverting back to the original time and space
variables—i.e., x— ex and t— et—which yields the follow-
ing equations:

h,+q,=0, (45a)
QR( Va4, 2@)&1
s AT T ) e

=2h—2hhcotanf+ 2Wehh,,.— 3Mal',, (45b)
3g Ma 1

I+ {(ﬂ - ThF,C)FL = P_esrxx’ (45¢)

referred to hereafter as the “weighted-integral-boundary-
layer” (WIBL) approximation. As its starting point is the
first-order boundary-layer equations, this approximation is
also first order with respect to the long-wave parameter e.

We now demonstrate that a model very close to the LWE
equations in (35) can be obtained from an appropriate expan-
sion of the WIBL system in (45). For this purpose we assign
the same order of magnitude for the parameters Re, We, Ma,
and Pe; as in LWE. Let us now expand g as g=¢qqg+q;+" ",
where ¢, is formally of O(e) [€ needs to be reintroduced in
(45)]. We then obtain, from (45),

2
qo=h (46a)

3

and
8 6 2.3 2 3 2
q1=——Re h°h,— —h’h,cotanf+ —Weh’h, . — Mah'T,.
15 3 3
(46b)
Equations (45a) and (45¢) then with g=¢,+¢q; yield Egs.
(35), but with a 4/5 instead of 5/6 in front of the Re term in

the concentration equation—i.e., a 4% error. Alternatively, g
can be obtained from the iterative scheme

6 . 17 qnq;t 9 (qn)zhx 3qn+1
q+ 5

—Re - 3 5~ =2h—2hh,cotant
5 7T h T h h

+2Wehh,,, — 3Mal’,,

n=0,1,2, ... , (47)

where ¢°=qo=2h%/3 and ¢=2h*h,=—4h*h, as obtained
from (45a) with g=¢°. A single iteration then with n=0 gives

ql=q +q =gh3+§Reh6h.—zh3h cotanf
R RT x— gl

2
+ EWeh3hm - Mah’l",. (48)

Hence the WIBL approximation is compatible with the LWE
model, and not surprisingly, as we shall demonstrate shortly,
it yields the same Kapitza and concentration modes as the
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LWE model for small k [up to and including O(k®)] even
though there is a slightly different factor in the concentration
equation. This difference is due to the small number of test
functions used in the derivation of the WIBL model. As a
matter of fact, this difference can be cured by projecting the
boundary-layer equations onto a larger set of test functions—
i.e., including polynomials of higher order [more precisely,
the O(e) term for u obtained from the boundary-layer equa-
tions involves polynomials of order 4]; however, this will
increase both the complexity and dimensionality of the final
WIBL equations.

A linear stability now of the steady state [h,q,I]
=[1,2/3,1] with perturbations of the form exp(\t+ikx)
yields three roots for A, which when expanded for small k&
become

1 . 8 2 2
N (k) =-2ik + s Re—gcotanH—ZMa k

7 1 2\
+| — Re — —cotan@ + — |Maik’ + O(k*),
30 3 Pe,

(49a)

2 . 1 2 7 1 2 .13
N (k) =—ik— —k*— | — Re — —cotanf + — |Maik-
Pe, 30 3 Pe,

+ Ok, (49b)

5 5 8 . 8 2 3 )
N(k)=———+ —ik+|—-— Re+ —cotanf+ —Ma |k
2Re 21 15 3 2

+0O(K). (49¢)

The first two modes are identical to those obtained from the
LWE model in (36)—not surprising as LWE, albeit with a
slightly different numerical factor in the concentration equa-
tion, is obtained from the WIBL approximation via an appro-
priate expansion. However, the WIBL approximation recov-
ers the least stable shear mode with n=1 in (23c) obtained
from OS, but with a slightly different O(1) term: 2.5 for the
coefficient of 1/Re instead of 72/4=2.46 or ~1% error.
Hence, at least as far as the linear instability threshold of the
base flow is concerned, the WIBL model is more accurate
than the LWE one. Unlike OS, however, it has a finite num-
ber of modes due to its polynomial dispersion relation as a
result of the projection of the original equations onto a finite
number of test functions (one to be precise). Clearly increas-
ing the number of test functions in the projection for the
velocity field would increase the number of shear modes
while the coefficient of 1/Re would progressively approach
its exact value of 72/4.

Figure 4 illustrates typical neutral stability curves ob-
tained from OS, LWE, and WIBL. These curves are the locus
of the cutoff wave number k at which )\11{=O; hence, in addi-
tion to the curves shown in the figure, k=0 is also a neutral
curve. Note that for the LWE model, only one of the neutral
stability curves is plotted, since for some values of the pa-
rameters, both the LWE Kapitza and concentration modes
exhibit unstable wave numbers. The concentration mode,
however, was only destabilized away from criticality; e.g.,
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FIG. 4. Neutral stability curves for several values of the Ma-
rangoni number (M ranging from 0 to 18 in steps of 3 from bottom
to top). The solid lines refer to the Orr-Sommerfeld equations, the
dashed ones to the WIBL model, and the dotted ones to the LWE
model. The unstable area is located above the curves. The values of
the remaining parameters are the same with those in Fig. 2. The
neutral curves have also a second branch which is simply the one
with k=0 for all . Note that for the LWE model, only one of the
neutral stability curves is plotted, since for some values of the pa-
rameters, both the LWE Kapitza and concentration modes exhibit
regions with unstable wave numbers.

for =25 and M =18 there is a concentration mode instabil-
ity region with a “tongue-type” shape starting from k=0.1
and without any overlap with the instability region associ-
ated with the Kapitza mode. This is a spurious effect owing
to the fact that the LWE model is not able to capture accu-
rately the behavior far from criticality (see also our discus-
sion in Sec. V C). Indeed, both the OS and WIBL models
predict that the concentration mode is always stable, as it
should be given its “diffusional” character as we pointed out
in Sec. IV B.

Figure 4 indicates that by increasing M the region of in-
stability shrinks, thus confirming the stabilizing role of the
surfactant on the steady state: not only the critical Reynolds
number increases, but also, for a given Re, the range of un-
stable wave numbers is shortened. It also shows that close to
criticality both LWE and WIBL models predict accurately
the neutral curves (as we have already pointed out both mod-
els predict accurately the neighborhood of the linear instabil-
ity threshold) and the critical values of y for which the de-
stabilization occurs (values of y for k=0) agree with Eq.
(24). The figure also shows clearly the overall superiority of
the WIBL model compared to the LWE model for M # 0. For
M # 0, the WIBL model also performs better for £ way out-
side the region shown in the figure. As was emphasized in
Sec. V C the LWE neutral curve can be improved by includ-
ing higher-order terms in the expansion. As was also dis-
cussed in the same subsection, the WIBL neutral curve can
be improved by taking into account the second-order diffu-
sive effects by analogy with both the free- and heated-falling
problems.
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VI. SOLITARY WAVES

We now seek traveling wave solutions propagating at con-
stant speed c. We introduce the moving coordinate transfor-
mation z=x—ct into the LWE model (35) and WIBL model
(45) with 9/ dt=—cd/ dz for the waves to be stationary in the
moving frame. The equations obtained from the LWE model
then in the moving frame can be integrated once, and we fix
the integration constants by demanding that [2,I']—[1,1] as
z— * o appropriate for solitary wave solutions. This gives

3
Welh" - Ec(h —1)+h* =1 =cotan6h>h’

4 6
+—Re h°h’

3
- =Mah’T" =0, (50a)
5 2
Weh’Th"” — ¢(I' = 1) + h*T' — 1 — cotan6h*T'h’
5 s 1
ty Re ”°’Th' = 2MahI'T' - P—r’ =0, (50b)

S

where the primes denote differentiation with respect to z.
These equations together with the boundary conditions
[h,I']—[1,1] as z— * o and all the derivatives of i,I" ap-
proaching zero as z— * oo define a nonlinear eigenvalue
problem for the speed c of the solitary waves. Similarly,
introducing the moving coordinate into (45a) yields —ch,
+¢,=0, which can be integrated once, and we fix the inte-
gration constant by demanding [h,q]—[1,2/3] (these val-
ues are obtained from the Nusselt base state). This gives a
relation between the flow rate and film thickness:

2
q=§+c(h—1). (51a)
We also introduce the moving coordinate into (45b) and
(45c¢), we integrate the resulting concentration equation once,
and we fix the integration constant from I'— 1 as z— *oe:

3 17 94°
Wehh”’z-Re(—c2+—£——q—2>h’
5 7h Th
3 3
+ =L+ cotanhh’ + ~Mal”",  (51b)
2h 2
N 3
(Ma—+—)F’=c—l+<—q—c>F. (51c)
2 " e, 2h

Again, these equations together with the boundary conditions
[A,I]—[1,1] as z— * oo and all the derivatives of 1,I" ap-
proaching zero as z— *oo define a nonlinear eigenvalue
problem for the speed c of the solitary waves.

Our aim here is to construct the solitary wave solutions of
the LWE and WIBL models. We restrict our attention to
single-hump solitary waves. They correspond to “principal
homoclinic orbits” of the dynamical systems corresponding
to the traveling wave models. We shall demonstrate in the
next section that these solutions are the main feature of the
nonlinear behavior of the system following the linear desta-
bilization of the base flow. We compute them using the con-
tinuation software AUT0O97 [44]. For this purpose Egs. (50)
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FIG. 5. LWE solitary wave bifurcation diagrams for the speed ¢
as a function of the modified Reynolds number y. The modified
Marangoni number M ranges from 0 to 18 in steps of 3 from left to
right. The remaining dimensionless groups are the same as in Fig. 2.

and (51) are converted into fourth-order dynamical systems
for the vector [h,h’,h",I']. We impose periodic boundary
conditions in a domain of size L—i.e., h=1,1'=1, h’' =0, and
I'"=0 (a total of five conditions)—and not all of them at x
=0 or x=L. The computation of the solution branches con-
sists of two steps: obtaining a good starting solution for a
given y, e.g., close to its critical value and then continuing
the solution with y as continuation parameter. The initial
condition for the starting solution is a small-amplitude sine
with wave number the maximum growing one as predicted
by the linear stability analysis. For the LWE model we then
continue this solution with L as a continuation parameter
while y and the remaining parameters remain fixed (for the
WIBL model this first step is in general much more involved
and might require simultaneous continuation with respect to
L and three to four other parameters). This continuation pro-
cess increases L up to a point where at least 70-80% of the
domain is flat and there is no significant variation of the
solution when L increases further. This then implies that, for
the given value of y, we are on the branch of homoclinic
solutions. We then fix L and continue the solution by using y
as a continuation parameter.

Figure 5 depicts typical bifurcation diagrams for the LWE
solitary wave speed c as a function of y for different values
of M. As we focus on the coupling between the flow and the
surfactant, only y and M are varied in our computations.
Close to criticality, traveling waves only exist if the flow,
through Y, is strong enough. The solution branches then start
from the threshold value of y given in Eq. (24). Away from
the threshold, the branches exhibit turning points at certain
values of x which depend on M and branch multiplicity with
two branches, a lower one and an upper one. Clearly the
upper branch is unrealistic as it predicts solitary waves with
infinite speed as y—0. Similar LWE bifurcation diagrams
are also found for the free-falling problem as well as the
falling film heated from below [8] and the falling film in the
presence of exothermic chemical reactions [13-15]. For the
free-falling film problem, Pumir et al. [49] demonstrated for
the first time that the LWE model exhibits finite-time blowup
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45 -

FIG. 6. WIBL solitary wave bifurcation diagrams for the speed
¢ as a function of the modified Reynolds number . The modified
Marangoni number M ranges from 0 to 18 in steps of 3 from left to
right. The remaining dimensionless groups are the same as in Fig. 2.

behavior for a sufficiently large set of smooth initial condi-
tions when this equation is integrated in time for Reynolds
numbers larger than those corresponding to the turning
points. Clearly, this unrealistic behavior is related to the
model’s nonexistence of solitary waves. The connection be-
tween the absence of solitary wave solutions and finite-time
blowup was recently investigated by Scheid er al. [50]. The
blowup behavior marks the failure of the LWE model to
correctly describe nonlinear waves far from criticality (recall
from our previous discussions that the LWE model fully re-
solves the behavior close to the instability threshold) and
cannot be cured by taking more terms in the expansion, al-
though as we emphasized in Sec. V C, this would improve
the LWE neutral curve. The same failure occurs for the fall-
ing film heated from below and the falling film in the pres-
ence of exothermic chemical reactions [8,13—15]. Similarly,
in our case time-dependent computations reveal a cata-
strophic behavior when the LWE model is integrated in re-
gions of the parameter space where solitary waves do not
exist.

Figure 6 shows typical bifurcation diagrams for the WIBL
solitary wave speed as a function of y for different values of
M. Unlike the LWE model, the WIBL model has no turning
points and predicts the continuing existence of solitary
pulses for all y. Similarly, we shall demonstrate in the next
section that unlike the LWE model, the WIBL model is quite
robust in time-dependent computations without any singular-
ity formation. As y increases, the wave speed increases, until
for sufficiently large y, the speed (and therefore amplitude)
of the solitary pulses seems to asymptote to certain values.
These values decrease with increasing M. In fact, for a given
X, increasing M decreases the speed (and therefore ampli-
tude) of the solitary pulses, a manifestation of the stabilizing
influence of the surfactant. This is also the case with the
lower branches of Fig. 5. Moreover, the lower branches of
Fig. 5 are in agreement with the WIBL ones up to approxi-
mately the location of the turning points. This should not be
surprising since a model very close to the LWE model can be
obtained from the WIBL model via an appropriate expansion
as we demonstrated in the previous section.
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FIG. 7. Solitary pulses for the free surface (a) and surfactant
concentration (b) for M=6 obtained from the WIBL model in Eq.
(51). x ranges from 10 to 30 in steps of 5 from bottom to top. The
values of the remaining parameters are the same with those in Fig.
2.

Figure 7 shows typical solitary wave shapes for both free
surface and surfactant concentration. The free-surface soli-
tary pulses are qualitatively similar to the free-falling film
solitary pulses and consist of a primary solitary hump con-
nected to the flat film with a gentle slopped back edge region
and a steep front edge region followed by a series of small
decaying bow waves. The surfactant concentration solitary
pulse also has a similar shape. Note that as y increases the
amplitude (and hence speed) of both free-surface and surfac-
tant concentration solitary pulses increases, a signature of the
destabilizing role of inertia in the system.

Let us now discuss the physical implications of the bifur-
cation diagrams in Fig. 6. As with Tables I and II we assume
a film of water at 25°. We also assume a modified Reynolds
number x=20 which corresponds to /y=0.117 mm (g,
=5.9 mm”s7!) and u,=0.0757 m s~!. From Fig. 6, we note
that the velocity of the solitary waves decreases from ~5.5u
to ~2u,, or from 0.42 ms™! to 0.15 m s~'—i.e., a reduction
by a factor of 3 as the surfactant concentration increases
from 0 (i.e., M=0) to 1.3X 10”7 mol m~? (i.e., M=18). The
latter value for the surfactant concentration corresponds to a
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small uniform surfactant concentration compared to the
maximum one—i.e., I'y~0.1T",—and can accordingly be
easily reached in experiments. However, despite the small-
ness of I'y compared to I',,, the surfactant effect on the speed
and therefore amplitude of solitary waves is significant, as
was first emphasized in Sec. II.

Moreover, increasing the Schmidt number to values above
100 in Fig. 6 has a negligible effect on the bifurcation struc-
ture and hence speed and amplitude of solitary waves. In-
deed, for M=18 and =20 increasing Sc to 1000, or even
10 000, has practically no effect on the dimensionless veloc-
ity ¢=2.038. As a matter of fact, any Sc=100 gives the
same result for ¢ for a given Y. That is because for Sc
= 100, the surface Péclet number Pe; is large and we lose the
effect of surface diffusion (for y=100, Pe,=1000 for y
=20): as emphasized in Sec. V A, when Pe, is large, convec-
tion dominates over surface diffusion and the surfactant trav-
els on the film surface by convection only, not diffusion.
Since now, for fixed I'.,, M is affected by I'y/T’,. only as
discussed in Sec. III, it is this ratio that really matters and not
the particular surfactant molecule (of course, the underlying
basic assumption here is that the surfactant obeys the von
Szyszkowski equation). In other words, for x=20 and fixed
I'.., the speed of the solitary pulses is reduced by a factor of
3 independently of the surfactant molecule provided that
Sc=100.

We now turn to the structure of the flow field beneath a
solitary pulse. In addition to the amplitude and speed of the
solitary pulses, the x component of the interfacial velocity at
y=h, u, obtained from Egs. (42) and (51b),

e 1 —2)—%1"’}1, (52)
2  2h 2

also increases as y increases, which can lead to a change in
the relative magnitude of the wave speed ¢ and interfacial
velocity ug. This might have some dramatic consequences for
the surfactant concentration, whose governing equation in
the moving frame (51c) can be rewritten as

L1—"=c—1+(us—c)r. (53)

Pe;
To illustrate let us assume for simplicity that Ma=0. The
value of ¢ as well as ug [=uy(z)] are then completely deter-
mined by Egs. (51b) and (52)—i.e., without the need of Eq.
(51c). At the instability onset the interface is flat and u =1
due to the choice of the velocity scale (the Nusselt flat-film
velocity; see Sec. IIT). Hence the velocity of the flow near the
interface is smaller than the wave velocity, which equals 2;
see Fig. 6 (the kinematic wave velocity).

Consider now Eq. (52) with Ma=0. u, has two terms:
3¢/2 and (3¢—2)/2h, which are positive since ¢>2. For a
fixed y and therefore c, as the film thickness % increases, the
second term decreases and hence u, increases. This implies
that for a given y the maximum of ug, ug .y, occurs at the
peak of the wave. Now, as y increases, our computations
show that u ,, increases so that, at some X, Ugy,=c. We
now have a recirculation zone: indeed the streamlines in the
moving frame correspond to envelopes of the velocity field
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20

FIG. 8. Streamlines in the moving frame for =15 and M
=0.1. The remaining dimensionless groups are the same with those
in Fig. 2. A clockwise recirculation zone is present below the pri-
mary solitary hump. The formation of this zone is a consequence of
the fact that the velocity of the flow at the surface of the film
increases as the wave height increases and eventually it can exceed
the velocity of the wave in some areas of the film.

in the moving frame (U,v) with U=u—c. Recirculation
zones indicate regions where the flow returns with v=0 or
stagnation points where U=v=0. (Note, however, that in the
laboratory frame these regions have u=c>v so that the con-
dition u>v in the laboratory frame necessary for the long-
wave assumption still holds.) Since then ug ,,,=c implies a
recirculation zone and ug,,, occurs at the wave peak, the
recirculation zone starts from a single stagnation point right
at the top of the wave and then spreads into the wave as y
increases with two stagnation points, one at the front of the
wave and another one at its back, while u ,,, becomes larger
than c.

Figure 8 shows a recirculation zone beneath the primary
solitary hump for y=15 and M =0.1 Recall that for simplic-
ity the above discussion was restricted to the limiting case
M=0. Nevertheless, this case helped us identify the mecha-
nism of the formation of the recirculation zone. The zone
shown in the figure has two stagnation points on either side
of the peak. At these stagnation points u,=c, while inside the
recirculation zone u, exceeds c. Due to the particular struc-
ture of the free-surface flow field around the front stagnation
point, with fluid particles from either side of the stagnation
point moving towards it, we expect a significant accumula-
tion of surfactant there with a large value of I" close to this
point, provided that the Péclet number is large—i.e., that the
diffusion coefficient of the surfactant is small—which indeed
is the case in the figure since y=15 and Sc=100. In other
words, as the wave moves from the left to the right, it con-
tinuously sweeps surfactant whose concentration then builds
up at the front stagnation point. When the recirculation zone
is first born as a single point at the wave peak, I" has a large
value close to this point. However, provided that the surfac-
tant is able to diffuse—i.e., Pe, is finite—this pileup of sur-
factant does not lead to a true singularity formation for I". On
the other hand, when Pe,— oo, Eq. (53) shows that I' devel-
ops a singularity for u;=c. Note that M # 0 reduces the ac-
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FIG. 9. Solitary pulses for the free surface (a) and surfactant
concentration (b) for y=15 as M increases (0.01 —0.10 in steps of
0.03 from top to bottom). The remaining dimensionless groups are
the same as in Fig. 2. The stabilizing influence of the Marangoni
stresses reduces the surfactant pile up due to the presence of a
recirculation zone beneath the free-surface solitary hump.

cumulation of surfactant as shown in Fig. 9. The stabilizing
influence of the Marangoni effect on the interface reduces
the maximum amplitude of the solitary pulse as shown in
Fig. 9(a). Despite the fact that the amplitude change is small
and hence the change of u,—c is small, u,—c remains close to
zero and small changes of this quantity can have a significant
effect on I' (recall, e.g., that when Pe,— %, u,—c is respon-
sible for a true singularity for I'). The result of increasing M
is a dramatic reduction of the maximum value of I'. As a
matter of fact, our computations indicate that the Marangoni
effect delays the appearance of recirculation zones and hence
the appearance of large values of I' to larger y. For very
large M, this delay can be so significant that recirculation
zones do not occur at all (at least in the region of moderate
Reynolds numbers considered here) as u, never reaches c.
Of course, our WIBL model is not applicable when the
dimensional concentration I is large. Indeed, as was pointed
out in Sec. II, when the concentration of surfactant increases
to large values the mechanical properties of the interface
change drastically: the interface becomes increasingly
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“rigid” starting to develop rheological properties and addi-
tional effects neglected here such as surface viscosity might
have to be added [31]. Further, it is quite likely that when the
surfactant piles up at the stagnation point, and since it has
nowhere to go, the flow might force it into the liquid, even
though it is insoluble, or it might be expelled to the sur-
rounding gas.

However, large dimensionless concentrations do not nec-
essarily correspond to large dimensional ones. Indeed, for the
peak value I'~25 in Fig. 7, assuming a reference dimen-
sional concentration I'y=(1/25) X 107 mol m™2, gives a di-
mensional concentration I'~ 10~® mol m~2, which is moder-
ate compared to I',, in Table I, and M =5.4 very close to the
value of 6 in the computations of Fig. 7. Hence, the concen-
trations reported in this figure are not unphysical. Similarly,
for the conditions in Fig. 9, the maximum dimensionless
concentration of I' ~ 1600 gives a dimensional concentration
of '~ 1.6X 107 mol m~2 by assuming 'y~ 10~ mol m~2, a
moderate value compared to I',, in Table I, a small value
M ~1072. Again the concentration peak is physical, but now
the long-wave approximation is violated, unlike Fig. 7.
Eventually, for large x large dimensional concentrations can
result.

VII. TIME-DEPENDENT EVOLUTION

The existence of a special class of solutions—namely,
solitary waves stationary in a moving frame—raises the
question of relevance of these solutions which is related to
the way they attract initial conditions. An answer to this
question can be given by means of a numerical solution of
Egs. (45) as an initial-value problem. For this purpose we
employed a Crank-Nicholson-type implicit scheme with the
spatial derivatives approximated by central differences and
with dynamic time-step adjustment to monitor the accuracy
of the computations. We impose periodic boundary condi-
tions over an extended domain, much larger than the maxi-
mum growing wavelength predicted by the linear stability
analysis.

Figure 10 depicts the evolution for the free surface and
surfactant concentration using as initial condition for the free
surface /1 a Gaussian distribution in the middle of the domain
and [g,I']=[2/3,1]—i.e., their flat-film values. The results
are presented in the moving frame with the velocity of the
corresponding infinite domain stationary solitary pulse for
the free surface and concentration obtained from the travel-
ing wave equations (51) for the same parameter values. The
localized initial condition for / through the coupling with the
Marangoni effect induces at early times a localized distur-
bance for I'. Both 4 and I' localized structures then start
growing and speeding up until for large times the system
evolves into the infinite-domain stationary solitary pulse ob-
tained from the traveling wave equations (51) for the same
parameter values and the velocity approaches asymptotically
the velocity ¢=2.370 12 of the bifurcation diagram in Fig. 6.
We also observe a radiation wave packet forming to the back
of the solitary pulse, and much like free-falling films, this
wave packet will eventually give birth to additional solitary
pulses.
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FIG. 10. Time evolution for the free surface height # and sur-
factant concentration I" obtained from the WIBL model in (45) for
x=15, M =6, and the values of the remaining parameters the same
with those in Fig. 2. The initial condition is ¢=2/3, I'=1, and a
Gaussian distribution for the free surface in the middle of the do-
main, i=1+A exp[—x?/(23)], with amplitude A=0.1 and variance
3,=400. The domain size is 10 000, and successive curves are sepa-
rated by Az=40. The results are displayed in the moving frame with
velocity ¢=2.37012, the velocity of the corresponding stationary
solitary wave solution for the free surface and concentration ob-
tained from the traveling wave equations (51).

The formation of the solitary pulse in Fig. 10 is driven by
the Kapitza interfacial mode of instability analyzed in Sec.
IV B. Figure 10(b) also reveals a small amplitude “dip” ema-
nating from the middle of the domain at small times and
traveling backwards in the moving frame. In the laboratory
frame the speed of this structure is ~1 and corresponds pre-
cisely to the stable concentration mode analyzed in Sec.
IV B. Since the value of Pe, in these computations is large,
this concentration wave decays very slowly as it is advected
by the flow.

Figure 11 shows the evolution for the free surface and
surfactant concentration using as initial condition for % ran-
dom noise and [¢,I"]=[2/3,1]. The results are presented in
the moving frame with the kinematic wave velocity c=2.
The large-time evolution is characterized by trains of soliton-
like coherent structures of almost the same amplitude and
which interact indefinitely with each other. These coherent
structures possess a gently slopping back edge and a steep
front edge preceded by some small bow waves and are remi-
niscent of the infinite-domain stationary solitary pulses ob-
tained in the bifurcation diagram of Fig. 6.

These computations show the relevance of the solutions
obtained in Sec. VI in the nonlinear regime following the
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FIG. 11. Time evolution for the free surface height 4 and sur-
factant concentration I" obtained from the WIBL model for y=15,
M =6, and the values of the remaining parameters the same with
those in Fig. 2. The initial condition is ¢=2/3, I'=1, and random
noise of maximum amplitude 0.01 for 4. The domain size is 2000.
The results are displayed in a moving frame with the linear kine-
matic wave velocity c=2.

destabilization of the steady state due to the Kapitza mode.
Moreover, for the parameter values in Figs. 10 and 11, the
LWE prototype does not have any stationary solitary wave
solutions (Fig. 5) and in fact it blows up in finite time. The
WIBL prototype, on the other hand, is always quite robust
and does not exhibit any singularity formation.

VIII. CONCLUSIONS

We investigated the dynamics of a film falling down a
planar substrate in the presence of insoluble surfactant on its
free surface. We examined the Orr-Sommerfeld eigenvalue
problem of the full Navier-Stokes and concentration equa-
tions and associated wall and free-surface boundary condi-
tions via a small-wave-number expansion and a full numeri-
cal solution. This allowed us to assess the linear stability
characteristics of the system: there are three types of modes:
the Kapitza interfacial mode, which is responsible for the
destabilization of the free surface; a concentration mode,
which is neutrally stable for large surface Péclet numbers;
and the shear modes, which can only be destabilized for very
large Reynolds numbers. The role of the Marangoni effect in
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the linear regime is to dampen the Kapitza mode and reduce
the critical Reynolds number for the instability onset.

Subsequently, we developed two reduced models to ac-
count for the description of the nonlinear regime following
the destabilization of the steady state due to the Kapitza
mode. The first one is based on the classical long-wave ex-
pansion and the second one on a weighted residuals ap-
proach. Both models predict accurately the critical Reynolds
number for the instability onset, and their neutral stability
curves are in good agreement with those obtained from the
Orr-Sommerfeld analysis (with the curves of the second
model being in better agreement with Orr-Sommerfeld than
those of the first one).

We then focused on the nonlinear regime. In particular,
we constructed bifurcation diagrams for the speed of single-
hump solitary waves for the free surface and concentration as
a function of the Reynolds number. The bifurcation diagrams
of the first model were found to be unrealistic with turning
points and branch multiplicity at certain Reynolds numbers.
As a consequence of this, the model exhibits finite-time
blowup behavior in the region where solitary waves do not
exist, a sign of its inability to correctly describe nonlinear
waves far from criticality: it is only valid close to the insta-
bility threshold. On the other hand, the solitary wave solution
branches of the second model have no turning points and
show the continuing existence of solitary waves for all Rey-
nolds numbers. In fact, this prototype is found to be robust in
time-dependent computations without any singularity forma-
tion, which allows a quantitative description of the role of
the surfactant in the nonlinear regime. These computations
also reveal that the large-time behavior is characterized by
wave structures each of which resembles the infinite-domain
stationary solitary pulses.

The main effect of the surfactant in the nonlinear regime
is to dampen the free-surface solitary waves. In contrast, the
flow tends to induce accumulation of surfactant at the front
stagnation point of a free-surface solitary pulse for suffi-
ciently large Reynolds numbers. This could have a dramatic
effect on surfactant concentration causing large concentra-
tion values close to the front stagnation point of a recircula-
tion zone below the primary solitary hump, especially for
small Marangoni numbers. Such large values are unrealistic
and can be prevented by increasing the Marangoni number,
which can cause a significant reduction of the maximum of
the surfactant concentration, while large values of the Ma-
rangoni number can even suppress this phenomenon all to-
gether as they prevent the formation of recirculation zones.
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